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Molecular diffusion and viscous effects on 
concentration statistics in grid turbulence 
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Two-particle Lagrangian models in turbulence are used to consider dispersion in 
decaying isotropic homogeneous turbulence (i.e. approximating grid-generated wind- 
tunnel flows). Thomson’s formulation is used, and his model is extended to incorporate 
molecular diffusivity and viscosity, i.e. the range of scales modelled includes the 
dissipation subranges as well as the inertial subrange. New terms are proposed which 
consistently provide well-mixed models and the impact on Saffman’s well-known 
small-time results is considered. The new model is ideal for comparison with recent 
concentration-fluctuation measurements in decaying wind-tunnel turbulence and the 
results are encouraging. In particular, the fluctuation intensities, both along and across 
the wind tunnel, are well described by the new model. In addition, small source-size 
effects are far better explained when we include the molecular effects. A surprising 
result is the persistence in time of both source-geometry and molecular effects upon 
concentration fluctuations. Both of the effects are negligible at large times for mean 
concentrations, but persist for significant times for the fluctuations, indicating an 
important role for small-scale dynamics. 

1. Introduction 
Thomson (1990) has provided a Lagrangian technique for estimating the spatial and 

temporal development of concentration fluctuations in turbulent flows for arbitrary 
initial scalar fields. The method is particularly suitable for examining dispersion from 
compact initial sources rather than homogeneous random initial fields, when perhaps 
Eulerian methods are more suitable (Sinia & Yakhot 1989), although Lagrangian ideas 
have been used for this problem as well (Nelkin & Kerr 1981 ; Durbin 1982). Kaplan 
& Dinar (1988) provide an alternative Lagrangian technique, but we choose only to 
consider Thomson’s. 

Here we examine the dispersion appropriate for wind-tunnel flows where the scalar 
field is heat and the source is a heated wire of small diameter. The problem is to 
describe the ensuing scalar field : first, its spatial mean-temperature pattern and, 
secondly, its spatial temperature-fluctuation pattern. We suppose that the source is 
heated constantly and that the downstream statistics are therefore stationary. Below 
we use a model based on the concept of passive material particles (say molecules) for 
the scalar field. 

We uniformly use concentration as the descriptive measure of the scalar field, though 
when we consider measurements, the field is of temperature. We thus also assume that 
thermal dispersion and material dispersion are effectively equivalent when the 
respective thermal and molecular diffusivities are the same. 

The model we use (as adapted from Thomson) is a two-particle model and provides 
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only the first two moments of the scalar field. Therefore the results we obtain provide 
only a small part of the information contained within the probability density function 
for scalar concentration, but nevertheless they are important characteristics. In fact, in 
air-pollution studies it is seldom that characteristics other than the mean are 
considered, but we hope to advocate increased awareness of the role of higher moments 
and provide tools with which to estimate these moments, particularly in the context of 
the atmospheric boundary layer. 

One-particle Lagrangian models are widely used in atmospheric pollution studies for 
the purpose of estimating mean-concentration fields. For such models, the crucial step 
is the appropriate parameterization of the energy-containing scales of the turbulence 
(and the mean flow) and these are often taken from mesoscale numerical models. The 
methods developed over the years are useful in practical, even regulatory, ways and in 
general mean concentration fields are understood relatively well. 

Particle-pair trajectories sample turbulence rather differently, however, than do 
single-particle trajectories (Borgas & Saw ford 199 1) and two-particle models are 
necessarily more complicated. Because we consider compact sources, it is inevitable 
that we must consider particles that are close together in a single realization of the flow. 
The rate at which these particles separate is crucial in determining how fast the mixing 
occurs and thus the level of fluctuations. Consequently, a great deal of the importance 
of a two-particle model attaches to the small-scale properties of the turbulence and, to 
better understand the precise role played by turbulence, it is worthwhile considering 
simpler flows than those typically encountered in the atmosphere. Even then, the small- 
scale separation behaviour is not understood very well. In addition, the controlled 
measurements that we need to compare our theory with experiment only exist in the 
laboratory (wind tunnel) in enough detail for a comprehensive test. Such flows are 
designed to be idealized approximations and are of much lower Reynolds number than 
flows in the atmosphere. Thus the small-scale properties of laboratory experiments and 
atmospheric flows are not necessarily alike; nevertheless both flows are complex and 
mixing. 

Wind-tunnel flows are also in the realm of direct numerical simulations of turbulence 
and hence of simulated scalar mixing too (Yeung & Pope 1989). However, it is 
inconceivable that direct numerical simulations will extend to atmospheric flows in the 
near future so that some degree of modelling is inevitable. Our purpose here is to 
develop a two-particle model, i.e. an acceptable approximation to reality, that agrees 
with wind-tunnel measurements, but which can be extended to flows of much greater 
complexity and structure. Such a model depends on the Reynolds number and we wish 
to vary this parameter over orders of magnitude: from ‘low’ values appropriate for 
laboratory experiments to arbitrarily large values appropriate for the atmosphere. 

Pope (1994) gives the most comprehensive and up-to-date account of Lagrangian 
stochastic models for transport studies. Here we consider only a small part of this 
broad topic and focus upon Thomson’s (1990) two-particle model. This model was 
developed on the premise of arbitrarily large Reynolds number and resolves scales only 
within the inertial subrange. The justification for the Markovian nature of this model 
essentially depends on infinite Reynolds number (Borgas & Sawford 1991, 1994a). The 
extensions we make, by incorporating molecular diffusion and viscous dissipation 
ranges, are ad hoc and only defensible by virtue of good comparisons with experiments 
and, indeed, are essential for that purpose. The Markovian basis for Thomson’s model 
is not compromised by molecular diffusion (but the transport of material is not now 
solely by fluid-particle advection). However, it is inconsistent to include dissipation 
ranges in the context of a Markovian model for velocity and displacement of material 
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particles because viscous effects clearly have a memory according to a dissipative time 
scale. 

Sawford (1991) has shown how a Markovian process for acceleration, velocity and 
displacement can incorporate dissipative ranges for one-particle Lagrangian statistics. 
Importantly. Sawford shows that the effect of finite Reynolds number is to set an 
effective value for the universal constant C,, which will be encountered below. The 
complexity of generalizing two-particle models to such higher-order auto-regressive 
processes prohibits their use in a practical way. Here we include dissipation ranges 
essentially to modify the Eulerian structure functions for the velocity field, which, for 
the wind-tunnel flows we consider. do not display inertial ranges. We assume that for 
the Reynolds numbers encountered here, the dominant effect of viscosity is to modify 
the structure functions and that the stochastic equations used are essentially inviscid 
(perhaps allowing for the parameters to account for finite Reynolds numbers). The 
encouraging results obtained using this procedure provide some justification. It should 
be remembered that the aim is to find a model that can explain features of the 
experiments (at least not be in gross conflict with them). but which can then be adapted 
for use in the atmospheric boundary layer. In this case, the Reynolds numbers and 
Peclet numbers become so large that the neglect of viscous effects and molecular 
diffusion is no longer an issue. 

Borgas & Sawford ( 1  994cc) have considered defects in Thomson's model because 
there is no account of intermittency. However, the conclusion there is that, at least for 
dispersion quantities, the effect of intermittency is rather small and unlikely to change 
the results significantly. Similarly, Borgas & Sawford (19946) have considered a more 
general class of models which are essentially like Thomson's but which can be chosen 
to have some additional dynamical properties by explicitly considering the pressure 
calculated from the Navier--Stokes equation for prescribed velocity statistics. Again, 
the effect upon dispersion is not strong and Thomson's model remains perhaps the 
simplest model satisfying several robust modelling criteria. 

In our work, as in Thomson's, we use the approximation that the Eulerian 
distribution of fluid velocities is Gaussian. Although this is certainly flawed, the results 
obtained suggest that it does not impact very much on dispersion (in grid turbulence). 
Here we aim for the simplest extension of Thomson's model and therefore choose to 
ignore the more complicated versions that exist. but we anticipate that the qualitative 
trends that emerge will be general, i.e. molecular diffusion will always facilitate particle 
separation while viscous subranges will slow down separation (when the particles are 
close enough together). 

In 5 2  of this paper we briefly describe Sawford & Tivendale's (1992) experimental 
set-up, the experimental parameters and some approximations that we believe facilitate 
modelling. 

In 3 3 we outline Thomson's two-particle model for self-similar decaying turbulence 
which is both homogeneous and isotropic. We also relate the concentration statistics 
to given two-particle displacement statistics and demonstrate that the need to account 
for molecular effects. 

In $4 we generalize Thomson's model to allow for a parameterization of the influence 
of viscosity and molecular diffusion. One important change in character is that self- 
similar decay of the turbulence restricts the power-law exponent (of kinetic energy say) 
to a single value when viscous parameterization is included. However, the experimental 
data consistently predict a different exponent, with the implication that as time 
proceeds the extent of the dissipation range grows relative to the other lengthscales in 
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the problem. While this is no real difficulty, it requires more extensive numerical 
calculations to derive the concentration statistics as functions of time. 

The generalization also requires a reassessment of the ‘ well-mixed ’ criterion of 
Thomson (1987, 1990). In order to simply satisfy this fundamental constraint, an 
expedient term is included in the statistical advection equation which is strictly 
unphysical, but successful computation suggests that the distortions are negligible for 
weak enough molecular diffusion. 

The final version of the model (again with parameters selected to best model the 
mean concentration) is then used in 5 5 to predict spatial concentration fluctuations 
which are compared with the experiments. It is clear that the trends imposed by the 
modelling of dissipation ranges, together with molecular diffusion, largely explain the 
differences between the measured and modelled concentration fluctuations. 

In $6, a comparison is made between the present model and Saffman’s (1960) results. 
He used an expansion procedure to examine the small-time behaviour of turbulent 
diffusion, focusing on the role of molecular diffusion. Like Sawford & Hunt (1986), we 
hope to model turbulent diffusion for much longer times than for which Saffman’s 
analysis holds. Nevertheless, our model should be interpreted in the context of the 
behaviour described by Saffman (1960). 

In $7, the implications for modelling in the atmosphere (at least for Reynolds and 
Peclet numbers appropriate for the atmospheric boundary layer) are discussed by 
examining model predictions for a sequence of ever higher Reynolds number. It is clear 
that the results asymptote toward the original results of Thomson (1990), i.e. the results 
for large Reynolds numbers smoothly asymptote towards the infinite-Reynolds- 
number limit. In fact, when the Reynolds number is of order lo5, the results are 
essentially inviscid, although this depends on the source characteristics. The present 
stochastic-modelling tool is specifically developed with a view to eventual application 
in atmospheric flows, which are not amenable to direct simulation when the effects of 
small inertial-range scales are important. We stress again that the stochastic equation 
we have used is not proposed as the best and most well-founded method for dealing 
with low-Reynolds-number flows, although it seems to produce reasonable results. The 
reason for constructing the model was that no sufficiently reliable data set exists for 
concentration fluctuations in large-Reynolds-number flows and that in order to make 
any comparison at all of theory and experiment we must limit ourselves to the present 
regime. 

Discussion and conclusions are given in $ 8. 

2. Wind-tunnel dispersion experiments 
Sawford & Tivendale (1 992) have conducted experiments over a number of years at 

CSIRO’s Division of Atmospheric Research, essentially carefully repeating and 
expanding the experiments of Townsend (1954), Uberoi & Corrsin (1 952), Warhaft 
(1984) and Stapountzis et al. (1986). A small suction wind tunnel with grid-generated 
turbulence and uniform mean flow is seeded with passive heat tracer by a thin wire 
placed horizontally across the tunnel downstream of the grid in fully developed 
turbulence. Of course the turbulence is not strictly homogeneous (or isotropic) because 
it decays with downstream distance. However, in a frame of reference moving with the 
mean flow, the flow appears instead to be non-stationary (with decaying turbulent 
kinetic energy, for instance) and, at least locally, the variations of flow statistics in the 
mean-flow direction are negligible. The turbulent transport that concerns us seldom 
exceeds a few centimetres (except perhaps far downstream of the source), so that 
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relative to the size of the wind-tunnel ( 3  m long with a 0.69 x 1.02 m2 cross-section) the 
‘localized’ nature of dispersion is ensured. Therefore, it is entirely reasonable to use the 
transformation to homogeneous but decaying turbulence. Similarly, the turbulence will 
be assumed to be isotropic. 

In the moving frame, the continuous heat source appears to recede from the 
dispersion domain. However, we shall approximate the dispersion problem by 
assuming that at some instant an area source gives an impulse of heat which then 
diffises and mixes in the vertical. This approximation is good because the mean flow 
velocity C’ is so large, 500 cm s-’, while the intensity of the turbulence is small, 
approximately 5 YO, Thus, we effectively ignore the longitudinal mixing. 

Other parameters of note are the source-wire diameter, d = 0.02 cm; downstream 
location of the source, so = 31 cm; and velocity fluctuation at the source, gt = xu2, 
where ,y = 0.39 x lo-’. The dynamics of the turbulence are assumed to be approxi- 
mately self-similar, i.e. look identical at each downstream location with the 
appropriate definition of scale. Such decay is often measured so that, for example, the 
turbulence kinetic energy decays with downstream distance (.Y) as 

f l z  = xU”.y/.y,)-~“’, (2.1) 
for some decay exponent MI. Sawford & Tivendale’s measurements give m = 0.7, which 
is at the upper end of the range of values from other experiments. Note that this decay 
is only self-similar with respect to inviscid scales and the extent of the viscous 
dissipation range grows with downstream distance. If rn = 0.5, then the motion is 
statistically self-similar on all lengthscales, i.e. the integral lengthscales and dissipative 
lengthscales grow at the same rate with downstream distance; correspondingly, the 
velocity fluctuations become smaller and the Reynolds number remains constant. 
However, the experiments are decisive in precluding m = 0.5 from experimental 
relevance. 

Self-similarity is useful because it facilitates the computation of dispersion statistics. 
For infinite-Reynolds-number models, 1.e. ignoring the dissipation ranges, it is possible 
to use self-similarity to our advantage and effecti,vely compute all the necessary 
dispersion statistics from one evolution in time. By this we mean that. in general, we 
are concerned with two-time statistics: the time of release of tracer and the time we 
record a tracer concentration. In decaying turbulence, the absolute value of both these 
times is significant but with self-similarity a single effective lag becomes the significant 
time. For models with explicit dissipation ranges, self-similarity when m = 0.5 allows 
the same simplification, but as this is not relevant for practical wind-tunnel flows, it is 
generally necessary to explore the two-time space of dispersion, which is compu- 
tationally more intensive. 

The inhomogeneous stationary flow represented by the wind tunnel can be replaced 
by an approximate homogeneous non-stationary (decaying) flow by considering the 
frame of reference moving with the mean flow. Let t,, be the elapsed time for the 
advection of the mean flow from the grid to the source location, i.e. x, = Ut,,. At time 
t = 0 we define the (x ,z)  origin of the moving frame to coincide with the heat source 
(ix. the j’-axis). Then the turbulence seen in the moving frame for subsequent times 
apparently decays, e.g. the velocity fluctuations decrease like 

and moreover the flow is approximately homogeneous and isotropic, at least in the 
neighbourhood of the origin. 
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The local lengthscale of the turbulence is intrinsic and is determined by other scales 
of the turbulence (near the grid it must be anticipated that the lengthscale is related to 
mesh size, but farther downstream the scales are self-determining). The mean energy 
dissipation rate (per unit mass) in the moving frame is given by 

(2.3) 

The local structure of the turbulence is often described with respect to the parameters 
cru and B to the extent that the lengthscale of velocity fluctuations is given by 

Since the general estimates form are less than one, we see that as the turbulence decays 
the velocity fluctuations get smaller and the lengthscale over which they are correlated 
gets larger. The Reynolds number based on these intrinsic scales is 

1-2m V U L  Re = ~ V = (1 +:) Re,, 

where v is the kinematic viscosity (of the air) and Re, = (1/3rn)~(Ux,/v) is the 
Reynolds number at the source. Note that, unless m = 0.5, the Reynolds number 
changes with time (downstream location). Because the experimentally determined 
value is m z 0.7, the Reynolds number becomes continuously smaller in time. 

Similarly, the Peclet number appropriate for molecular (thermal) diffusion, with 
molecular (thermal) diffusivity K ,  is 

1-2m ~ e = - = ( l + t )  o - L  Pea, 
K 

which changes with time, from the source-location value Pea, unless m = 0.5. In the 
experiments the tracer is heat and the temperature near the source is high (- 350 "C), 
thus the model of molecular diffusion should account for the fact that K is larger near 
the source than farther downstream with cooler ambient temperatures. On the other 
hand, the heat tracer is essentially passive so that the structure of the turbulence (in 
particular the dissipation range) is not affected. We account for temperature effects in 
the molecular diffusion but ignore them in the viscous effects; therefore the model uses 
an effective Prandtl number of about 0.5 (i.e. a bulk representative temperature of 
about 100 "C is used to estimate K). Note that we fix this number for all time. As 
molecular mixing intermingles cooler ambient air with the heated air, thereby lowering 
the temperature, the appropriate Prandtl number will decrease.? However, this should 
only happen some distance downstream and, because we find only minor impact of 
molecular diffusion far from the source and because we cannot model the temperature 
dependence correctly with our two-particle stochastic models, we shall not endeavour 
to improve upon the simplistic idea used above (i.e. we essentially model molecular 
diffusion correctly near the source but not elsewhere). 

For the present circumstances, the relevant physical parameters near the source 
location of x = 31 cm (denoted with subscript zero) are 

gu0 = 26.7 cm s-l, Lo = 0.79 cm, Re, = 144, Pe, = 62, o-, - 0.02L0. 
t Turbulent mixing of fluid particles does not directly intermingle air particles and it is often 

assumed that the heat (concentration) in a fluid particle remains the same indefinitely at large Peclet 
numbers . 
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The source-size parameter, ro. which is the spread of an assumed Gaussian-shaped 
source, remains uncertain because no explicit account is taken of thermal boundary 
layers immediately adjacent to the heated wire. The scale of these effects is in any case 
similar to the turbulence dissipative lengthscales 

- L,, RP," ' = 0.025L,, 

so that no strong dependence upon r,) is expected in this range. Only when the 
lengthscale of concentration variations is significantly larger than '1 are the fluctuations 
affected significantly by the turbulence, i.e. a highly localized blob moves as one until 
its size is larger than dissipation scales and then it is rapidly distorted. 

Thus the model we need must accommodate moderately large Reynolds-number 
effects (with Taylor-scale Reynolds number RP, = ( 1  5Rr)' - 45). and must resolve 
very small source size characteristics, i.e. many different lengthscale processes 
contribute to the dispersion. The tunnel is approximately 3 in long so that t/f, of order 
10 is the maximum elapsed experimental dispersion time. An estimate when r 9 I ,  for 
the root-mean-square lateral excursion of a particle initially on the centreline is 
(Thomson 1990) 

(2.7) 

which reaches about 5 cm at the end of the tunnel, but is less than 2 cm for the first half 
of the tunnel. 

These parameters will guide the modelling principles for the remainder of the paper. 
Although it is certain that inertial-range effects are obscured because of the low 
Reynolds number, it is likely that a useful model will be based on corrections to a high- 
Reynolds-number formulation, i.e. the basic mechanics of the wind-tunnel flow will 
qualitatively be those of typical turbulence. The model must also be able to resolve at 
least three orders of magnitude in lengthscale and calculate velocity and scalar fields 
for ten or more eddy-turnover times. Clearly, this represents a major computational 
exercise but is feasible using modern Lagrangian techniques. 

3. Two-particle stochastic models : Thomson's model 
In this section we compare Thomson's model predictions of concentration 

fluctuations with Sawford & Tivendale's ( 1992) results. This comparison shows that 
the modelled fluctuations are generally unreasonable and are only partially remedied 
by using an effective source size, many times the source size of the experiments. There 
are also problems with the small-time behaviour and overall the comparison is not very 
good but we will attempt to explain the discrepancies that exist. First, we give the 
formal description of the concentration fluctuations in terms of the probability density 
for particle pair displacements ($3.1). Then Thomson's (1990) model is outlined and 
discussed, and finally some results of calculations with this model is given (53.2). 

3.1. Tcclo-particle concentrution statistics 
The transport of material can be usefully described in Lagrangian terms. Suppose that 
a material particle is located at position y at time s (this could be the source). Heat 
transport is a more difficult concept in the Lagrangian context and we simply assume 
exact correspondence between the transport of heat and the transport of (say) tracer 
molecules when the thermal diffusivity and molecular diffusivity are the same. 
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Macroscopic material blobs are made up of many material particles and the motion of 
the blob requires the joint instantaneous description of each particle. A simpler goal 
is the calculation of ensemble-average moments of the material concentration field. 
Following Sawford & Hunt (1986), if the instantaneous source concentration at time 
s is S(y) ,  then at time t ( t  > s) the ensemble-average spatial structure of the material 
concentration field at position x is given by 

P 

where 8 is the Lagrangian transition probability density for the displacement of a 
material particle. 

Similarly the two-point concentration correlation has the form 

(C(X,, 4 w,, 0) = PZ(Xl, x,, t I Y1, Y 2,s) S ( Y J  S(Y2) d3Yl d3Y2 s 
and, in particular, the second moment of concentration is 

Here pZ is the Lagrangian transition probability density for the joint location of two 
material particles. The precise interpretation of (3.2) is that of a limit as x, --f x,, where 
in practice a finite small separation is maintained but which is a smaller distance than 
that over which concentration statistics vary significantly. This interpretation is 
discussed in Durbin (1980) and Thomson (1987). 

Clearly higher-order statistics require correspondingly higher-order joint particle 
statistics, but in this paper we shall only consider the particle-pair behaviour and 
consequently can only calculate the concentration variance. In particular, we cannot 
estimate the skewness of the concentration field since this would require a three-particle 
model. 

3.2. Injinite Pe‘clet number: Thomson’s (1990) model 
Molecular diffusion allows the material particles to shift between different fluid 
particles, which is a complicated process (but is modelled later rather simply, as in 
Sawford & Hunt 1986). When molecular diffusion is negligible, however, it is possible 
to associate material particles with Lagrangian fluid particles for all time, which is the 
level at which Thomson’s model operates. Thomson’s model gives the joint behaviour 
of fluid particle pairs. It does this by specifying a stochastic process for the 
instantaneous rate of change of the velocities of a pair of fluid particles, given their 
separation and velocities at some earlier instant. The physical process is approximately 
Markovian and has continuous trajectories and continuous velocity records (Sawford 
& Borgas 1994) and therefore is modelled by a Langevin equation for ‘diffusion’ in 
velocity phase space : 

where ai is an unknown function and d y  is white noise. As in Borgas & Sawford 
(1994 b), the vectors are six-dimensional with the first three components describing 
particle one and the last three particle two. In homogeneous isotropic turbulence, the 
dependence of a, reduces to dependence upon the particle velocities and upon the three- 
dimensional particle separation vector A .  The constant C,, is a universal number which 
describes the inertial-range Lagrangian velocity statistics. The drift vector a, is only 

dui = a , ( u , x , t ) d t + ( C , ~ ) l ” d ~ ,  (3.3) 
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partly understood in the context of such modelling: it must satisfy a well-mixed 
criterion (Thomson 1990) but is not determined uniquely by this condition; there are 
lesser constraints that are required for a strictly correct model (Borgas & Sawford 
1994h). Generally, however, reasonable forms of a, give acceptable results and 
Thomson's model is relatively simple and robust for many of the physical quantities of 
interest. We shall not here attempt to consider the general class of stochastic models. 
The main goal of this paper it to show that at least one two-particle stochastic model 
can reasonably account for at least one set of measured concentration fluctuations. 

Fluid-particle displacements are determined by Thomson's model with the simple 
kinematic relation 

again for six-dimensionai vectors. This relation is straightforward, but is modified 
when we consider material-particle motions; then we use Thomson's well-mixed 
conditions to determine suitable additional forms. 

The well-mixed criterion of Thomson (1987, 1990) ensures that a globally uniform 
source of tracer is not unmixed by the random motion of the turbulence. It is widely 
regarded as the most important constraint in Lagrangian particle stochastic models. It 
is most clearly obtained from the Eulerian stochastic formulation, which according to 
the Lagrangian modelling principles, is described by the Fokker-Planck equation for 
the Lagrangian transition p.d.f.. 

dxi = uidt, (3.4) 

where the displacements and velocities refer to fluid particles, i.e. we have not yet 
provided a model for the motions of material particles. The well-mixed criterion is 
developed by averaging the Pi distribution over the initial state of fluid particles 
(according to the prevailing Eulerian distribution of fluid velocities at time s). Since this 
process yields the unbiased velocity distribution 

p2(u, X, t I V ,  Y ,  s) pE(v, s I Y )  d'u d'y, (3.6) 

the well-mixed condition is 

Since we take PE to be known, this equation represents a constraint on a, but does not 
determine the drift term uniquely. In general, no known constraints do so. However, 
using a Gaussian distribution to approximate PE it is possible to obtain simple forms 
for a (quadratic form in the velocity u) which generate Lagrangian results which are 
reasonable. Thomson's drift term for 

is given by 
p E -  - (2z)-.1~-l/% exp(-$A$, '1 ' 1 )  = l l A t J l l )  

where ( u , ~  u j )  = A;' is the velocity covariance tensor which depends upon A ,  the spatial 
separation of sampling points. Furthermore, in isotropic turbulence this tensor 
depends on a single scalar function : the longitudinal correlation of velocity, nLf, which 
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FIGURE 1. Normalized centreline concentration fluctuations for Thomson's inertial-range model. 
Each curve is for a different source size and the open circles show Sawford & Tivendale's (1992) 
experiments for which n,/L, - 0.02 and m = 0.7. The universal constant is given the value C, = 6. 

depends on the scalar A ,  where A2 = Ai Ai. For self-similar decaying turbulence we use 
the parameterization 

where C is Kolmogorov's constant and is approximately 2; this form has been used 
extensively in the past (Durbin 1980; Sawford & Hunt 1986; Thomson 1990; Borgas 
& Sawford 1994 b) and explicitly includes inertial-range behaviour for the smallest 
resolved scales. Below (in 54) we modifyf(A) to incorporate dissipation ranges as in 
Sawford & Hunt (1986). 

Borgas & Sawford (1994b) have considered the problem of determining a in great 
detail, but in practical terms have found it difficult to improve greatly upon Thomson's 
model despite showing that in principle it has fundamental flaws. For the purposes of 
this paper, which is not necessarily to advocate a best model but rather to examine the 
possibility of explaining features of experiments, Thomson's model will be the basis of 
the work. The encouraging results that are given later justify this choice, but if the 
results had proven inexplicable with a model based on Thomson's form it would have 
been necessary to pursue other avenues. 

Model (3.8) can be used to determine the standard deviation of concentration 
fluctuations (see $ 5  below) and the results for the centreline value are shown in figure 
1. Also shown are the measurements of Sawford & Tivendale (1992). Clearly, the 
modelling has failed by some measures to describe many of the features of the 
experiments: the reasons why and the means to improve these models are our goals. 
Our hypothesis is that it is the neglect of molecular diffusion and of viscous dissipation 
ranges which is responsible for most of the differences. One straightforward 
approximation is that these small-scale effects may be accounted for simply with an 
effective source size many times the actual physical value. This is only partly true 
however, as a number of model predictions are shown in figure 1 for a sequence of ever 
larger source sizes, none of which adequately reflects the measured fluctuations for a 
broad range of times. Neither do alternative values of the uncertain universal constant 
C,, here taken to be 6, remedy the modelling deficiencies. (Below we do allow for 
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Reynolds-number dependence of C, and also modify the form of the governing 
equations.) The main point of this section is that it is certainly necessary to modify 
Thomson’s model in order to adequately explain the wind-tunnel measurements. 

4. Two-particle stochastic models : material-particle model 
The material-particle model that we develop (following Sawford & Hunt 1986) will 

be heavily based on Thomson’s inertial-range model and, at the very least, will be 
forced to obey an appropriate well-mixed condition. In fact, this will constrain two 
drift terms: ai in the equation for fluid-particle velocities and b, in the equation for 
material-particle displacements (which will now also satisfy a Langevin equation). Of 
course, we continue to emphasize Markovian modelling, as this seems approximately 
correct for high-Reynolds-number turbulence, but allow dissipation ranges to enter the 
modelling in an ad hoc way by parameterizing viscous effects in the velocity structure 
functions. In particular, we do not alter the high-frequency structure of one-particle 
accelerations (as in Sawford 1991) which is altogether too complicated, and in any case 
partly compensated for since we fit the value of C,, to mimic one-particle results. Two- 
particle accelerations derived from stochastic models are not physical even for inviscid 
models (Borgas & Sawford 1994h) and no attempt is made here to properly model the 
dissipation ranges when molecular effects are included. The principle constraint 
applied in this paper is Thomson’s well-mixed condition and some simple two-to-one 
reductions of Borgas & Sawford (1994b). 

The new model begins with the equation for material-particle displacements, which 
can be written similarly to above as 

ds i  = (ui + bf )  dt + ( 2 ~ ) “ ~  d Wi, (4.1) 

where ui is the velocity of the fluid particle in which the material particle at  present 
resides, bi is a drift term as a consequence of the diffusion and is partly determined by 
the well-mixed condition and K is the coefficient of molecular diffusivity (or thermal 
diffusivity). It is important to distinguish between fluid-particle velocity and material- 
particle velocity since the latter, according to the white noise dW’, does not exist. 
However, Eulerian velocity statistics are not altered by this distinction ; only Lagrangian 
quantities are affected. 

The choice of generalized material particle advection with b is simply a mathematical 
convenience (explained below) and is not strictly physical. In our case b is a function 
of the separation of two particles and each particle’s velocity (see below) and it is 
proportional to K, and therefore is ‘small’. We shall also find that b vanishes in two-to- 
one reduction (Borgas & Sawford, 19946) and is insignificant for longer dispersion 
times. 

The companion equation of (4.1) is an equation for the fluid-particle velocity in 
which the material particle is found at each instant. This is potentially different from 
the equation for a labelled fluid particle (or pair of particles) which is the usual 
Lagrangian concept. Now we allow for different fluid particles to contribute to the 
velocity history where each fluid particle contributing to this history is marked at some 
instant by the presence of the material particle. Nevertheless, the process must be 
approximately Markovian, perhaps even more so than a pure fluid-particle process, 
and moreover remains continuous in the velocity phase space. Therefore, the equation 
that we use is just a Langevin equation (a diffusion process) 

dui = G,(u, X, t )  dt + (C,, F)1’2 d q, 
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where a", is an unknown function and d q  is white noise. This equation is of course very 
similar to the previous equation for the velocity process, (3.3), but we formally allow 
the drift vectors to be different. Note that the interpretation also differs: this equation 
gives a stochastic estimate of the fluid-particle velocities ' seen' by the wandering 
material particles and not the Lagrangian velocities of labelled fluid particles. 
Consequently, the value of the coefficient of the white noise is allowed to differ from 
the non-diffusive case. This constant, co, is estimated in this paper by comparison with 
mean concentration statistics, but is otherwise unknown and is certainly allowed to 
differ from C,. 

The well-mixed condition applied to the joint material/fluid-particle process gives 
rise to the equation 

where the Eulerian distribution of fluid-particle velocities, PE, for given material- 
particle positions, is the same as the distribution for given sampling points. Thus we 
may choose as a solution a drift vector a' essentially identical to Thomson's term. This 
partitioning of (4.2) leaves the condition 

in order to satisfy the well-mixed constraint. A simple solution for b, according to this 
condition is 

which is the model we shall use. An alternative choice with b = 0 requires that ii be 
modified to account for the KV'P, term in (4.2). This requires at the very least cubic 
forms of a" with respect to velocity and consequently very laborious determinations of 
unwieldy algebraic expressions for the drift term, severely reducing the efficiency of 
numerical computations. Our choice is to sacrifice the higher-order small-time integrity 
of the advection to produce as simple a model as possible with molecular effects 
included. Thus non-zero b is assumed. 

Calculations with this model indicate that this choice is reasonable and no others will 
be considered. Note that if the molecular diffusivity is taken to be vanishingly small, 
then the time series for the velocity of (distinct) fluid particles, which have been 
sequentially marked by a material particle, should approach that along a fluid-particle 
trajectory. Therefore it is natural that Thomson's model should be the basis of the 
present model for the velocity process and that any deviations from it should vanish 
when K = 0. 

To specify the model completely we need a f(d) parameterization which includes 
dissipation ranges (and possibly inertial ranges). The form we take is 

Here ?;I is Kolmogorov's microscale, 
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FIGURE 2. The parameterized velocity field longitudinal structure function, 1 --f(~). 
several Reynolds numbers. Only for very large Re is any inertial-range behaviour ($ 
evident. 

shown for 
power law) 

B is determined by inertial-range properties, and r is a constant determined by the 
standard definitions. In the inertial range (for sufficiently large Re) 

thus as C % 2. P z L. Next consider the far dissipation range ( A  < 7/), where 

the last by definition. The parameterization therefore requires that 

which together with Re,, = cr,[ A / .  = (15Re)ll2, gives 

x'"' = 1) 30 =;'a = 164.32. (4.5) 
This differs from Sawford & Hunt's (1986) parameterization (a = 42.6), but their 
model was one-dimensional and as such has model-specific interpretations of 
representative quantities. 

Figure 2 shows the form off(A) for a different Re, clearly indicating a difficult-to- 
observe inertial range for the values of Re appropriate for wind-tunnel experiments. 
However, we elect to use a forin that formally gives the inertial-range behaviour for 
sufficiently large Re because it is precisely this limit that interests us from the 
atmospheric perspective. 

One of the reasons for favouring Thomson's (1990) model is that the two-particle 
model produces excellent one-particle statistics for velocity and displacement when a 
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single particle is considered independently of the other. This is despite explicit violation 
of this independence property in principle (Borgas & Sawford 1994b). In a practical 
sense, it is important that the one-particle behaviour is good because we intend to use 
these properties to select en. It is therefore encouraging to find that the new model is 
equally effective at modelling the one-particle dispersion of a material particle as was 
Thomson’s model for the dispersion of a single fluid particle. Note that this is not 
equivalent to considering coincident particles, i.e. that the separation vanishes. 
Thomson’s model strictly requires finite (inertial-range) separations at all times ; despite 
our inclusion of viscous effects, neither can our model correctly represent the proper 
single-particle character as particles approach coincidence. We simply hope that the 
viscous effects we include impose the correct trend by damping the separation motions 
of particles which are already separated. 

Coincidence of fluid particles is also a factor in considerations of incompressibility 
of the flow (Kaplan & Dinar 1988); for if particles are close enough for the local flow 
to be a simple shear flow, then in the limit of coincidence, the Jacobian of the 
Lagrangian transformation can be defined, which must be unity in each instantaneous 
realization of trajectory evolution for an incompressible flow. However, when the 
particles are constrained to be a finite distance apart, the Lagrangian incompressibility 
constraint cannot be applied in a single realization and incompressibility is trivially 
satisfied, as in the case of one-particle models. For separated trajectories we would 
actually need a three-particle model, where two of the three particles approached 
coincidence, in order to apply an incompressibility constraint for each realization of 
the triple trajectory evolution (where two of the trajectories are arbitrarily close to one 
another). 

5. Concentration statistics 
In this section calculations with the new model are shown to better account for the 

small-source-size experiments of Sawford & Tivendale (1992). These results instil 
confidence in the stochastic-equation approach since the degree of fitting is minimal 
and since the model is physically based (i.e. it is not just a fitted stochastic process). 
However, first (§ 5.1) the model is formulated in the reversed sense, i.e. for trajectories 
from the receptor back to the source because this is a more efficient way of dealing with 
the transport. Secondly, an approximation is introduced (Q 5.2) by explicitly 
partitioning the particle-pair displacements into centre-of-mass and separation 
coordinates, and assuming these components are independent. This approximation has 
been used extensively in the literature and keeps the statistical noise manageable for 
longer times. The remainder of the section (55.3) gives the model results, and it is the 
most important part of the section. 

5.1. Reversed trajectories 
As in other studies it is convenient to consider dispersion modelling in the reversed 
sense where we model the paths from a given point (the concentration measurement 
point) at time t ,  to random initial points at time s. Only those trajectories that pass 
through the source initially will contribute to the accumulation of material at the 
measurement point. Thomson (1987, 1990) shows how to determine an appropriate 
well-mixed model for reversed trajectories by considering the backwards Kolmogorov 
eauation: 



.Molectilur difftlsion and ciscous efSects in grid turbulence 39 

where P, = P..(u, x ,  t 1 u, y ,  s) is the forward transition probability density for dis- 
placements and velocities of two material particles, i.e. t > s. The coefficients a and b 
are the functions used in the forward model, (3.8) and (4.3), except that they are 
evaluated with the independent variables at time s, y and u respectively, 

Using Thomson’s (1987) result that 

lFl,(u, x ,  t 1 u , y , s )  P , (u;y ,  s) = P2(u,y,s( u,  x ,  t )  PE(u; x, t ) ,  

which is still valid when molecular diffusion effects are included, and with the changed 
independent variables 

then the reversed model is identical in appearance to the forward model except for 
primes on the independent variables. Thus the corresponding Langevin equation 
(equivalent to (3.3) and (4.1) in primed variables) can be used to develop the reversed- 
trajectory statistics. 

In the reversed problem, however, the parameters v;f, and tgrow with time t‘, and 
concurrently the lengthscale L becomes smaller. Suppose that we have made all 
variables non-dimensional with respect to source parameters (at time t = 0). We are 
interested in the statistics at time t = Tt, ( T >  0), which is equivalent to x = Tx, 
downstream in the stationary-frame wind-tunnel context. The parameters in reversed 
time t‘ (made dimensionless with to),  where t’ = 0 corresponds to t = Tt,, and t‘ = T 
corresponds to t = 0, are 

f ’ = - r  , u I = - u ,  x ’ = y ,  

a.L - -(l+T-t’)-”, L=(l+T-t’)’-”,  

which may be used in a time-dependent transformation of the problem. We now 
transform velocities and length to variables proportional to a,( t’) and L(t’) respectively, 
and use a transformed time T according to 

The transformed problem is effectively stationary when m = 0.5 (when dissipation 
ranges are included) or for any m in the case of a strictly inertial-range model. Thus 
in this case we can calculate an ensemble of transformed particle-pair trajectories 
beginning (i.e. ending in real forward time) with a negligibly small separation, for a 
fixed 7-interval. Then each lag less than 7 can be used as another effective final time for 
calculating concentration statistics, i.e. this same ensemble can be used for calculating 
the full time development of the concentration fluctuations. 

In contrast, when m + 0.5 and with dissipative ranges, which is the case most relevant 
here, we must compute a new ensemble of trajectories for each final time. This is 
because, although the velocity variance is constant in the transformed problem, the 
dissipation lengthscale of the spatial correlation of velocities changes with transformed 
time. Thus the ensemble of trajectories for a fixed final time 71 cannot be transformed 
to give the equivalent ensemble for a shorter elapsed time 72. In fact, when rn =k 0.5 it 
may be more efficient computationally to pursue forward-time integration, but this is 
not a critical issue in this study. 

5.2. Separationlcentre-of-mass approximation and scaling 
The Monte-Carlo numerical solution of the stochastic model employed here necessarily 
uses a finite number of realizations and as a consequence there are difficulties in 
resolving concentration fluctuations at large times. The reversed trajectories have in 
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this instance wandered far from the origin and limited numbers intercept the source. 
Thus the concentration statistics are progressively degraded. One method of improving 
this performance is to use an approximation due to Sawford (1983) which has been 
used in other relative dispersion studies. In particular, Thomson (1990) has shown its 
utility for the stochastic-model relative dispersion problem and likewise we have 
checked and verified its validity for the present model. 

The dispersion of material is now estimated semi-analytically by approximating p2 
(for reversed trajectories) by 

f&%, A", s I x, A, 0 = G(z0, s I z , t )  P V , ,  s Id, 0,  (5.1) 
where G represents the Gaussian form and P is unknown. The variables in (5.1) are the 
centre of mass and material-pair separation : 

A = x ' - x  (x' + x )  
d 2  ' 

z=- 

respectively ; the approximation is an independence hypothesis €or these uncorrelated 
variables, together with the further assumption of Gaussian displacements of the centre 
of mass with (reverse) variance ai(t). Furthermore, for ~ J I  instantaneous Gaussian 
source of mass S ,  (in total when M = 0; per unit length when M = 1 ; per unit area 
when M = 2 )  spread over lengthscale go,  it follows that 

(C'(X))  = S t G , ( 2 / 2 x ; ~ g + g ; )  (5.2) 

where M denotes the topology of the source ( M  = 0 for a point source, M = 1 for a 
line source and M = 2 for an area source); and, for example, 

where x measures distance normal to the centreplane of the area source. 

particle separation di ,  to compute the average 
Thus the numerical task requires us to find a:, and, for N realizations of initial 

so that 

The crws-stream profile of the concentration fluctuations, crc, defined as 

( C ' ( X ) )  = S&c2G,(2/2x;a;+a,2).  

a x >  = (C"X)> - (c(x))z, 
is, according to the approximations for an area source ( M  = 2),  

where a; is the one-particle dispersion and the subscription on G denotes the 
dimensionality of the source (2  = area source). Thomson normalizes his profiles with 
the value of the centreplane fluctuation: 
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FIGURE 3. One-particle dispersion (from- mean concentration profiles). Experiments (circles) and 
modelled results (curves) for different C, values. Non-self-similar decay, m = 0.7, is best fit by 
c, = 3. o-”/L, = 0.01. 

If we let x = (cr;+a:)lisX be the normal distance from the source centreplane and 
5’ = (cri + ai)/(crI + a:), then fluctuation profiles normal to the centreplane are given by 

a:. - [27c(al+ a:)l’’~-~c~ exp (- S - ~ X ’ )  - exp (- X’) -- 
4 0 )  [27c(4 + Cr;)]l’yci - I 

Line-source or point-source approximations can be found in a similar way. 

5.3. Results 
Before any meaningful wind-tunnel comparisons can be made the constant co must be 
estimated. Here we choose this iuniversal’ constant so that the measured mean- 
concentration profiles are modelled correctly (our aim is to predict concentration 
fluctuations about this mean). Thomson (1990) gives the necessary results, (2.7), for 
one-particle dispersion (hence mean Concentrations) for the case of self-similar 
decaying turbulence considered here. It is straightforward, by simple addition, to 
include the effects of molecular diffusion. These merely alter the small-time results and 
indeed improve the correspondence, but the structure of longer-time dispersion is 
influenced mainly by m and ?(,. 

Figure 3 shows the comparison of the one-particle dispersion measurements with 
theory, i.e. (2.7) combined with additive molecular effects (because of two-to-one 
reduction, this is practically equivalent to our stochastic equation results) ; the vertical 
concentration profiles are very nearly Gaussian, with downstream spread given in 
figure 3.  The choice c,, = 3 provides the best fit in this case (w = 0.7), but it should be 
noted that this value is sensitive to m (m is an exponent so absohte differences tend to 
be amplified exponentially). 

Figure 4 is similar to figure 3, but shows the source-size dependence for c,, = 3. 
Evidently a value of cr,, x 0.01 Lo is meaningful as far as the experimental mean 



42 M .  S. Borgas and B. L. Sawford 

g u  to  

100 

10-1 - 

a,/Lo = 0.001 
0.01 
0.02 lo-*r> , , ~ , / , , ,  , , , , ,  ::;5, , , r , , /  

00000 Experiment 

10-2 lo-'  100 10' 
tlt, 

FIGURE 4. As for figure 3, but varying the source size parameter, go, with fixed to = 3. 

concentrations are concerned. Thus r0 as estimated directly from the known diameter 
of the heated-wire source and as estimated from the one-particle dispersion are 
consis tent. 

The Peclet number for these two figures is Pe = 60, but this choice affects (along with 
go) only the small to moderate scales of dispersion. co is determined (for each m) by 
the larger-scale dispersion. Note that there is some evidence that a smaller Pe would 
better fit the data at smaller times; this would raise the curves slightly for the initial 
development and potentially allows a better fit than simply adjusting go. 

Anand & Pope (1985) find co=2.1 in an analogous procedure, but based on 
different wind-tunnel data (m = 0.65). In fact, the present data support a contradictory 
trend for if we take m = 0.5 the data are best fit by the theory when z', = 6. The fact 
that co is apparently not universal is not a stumbling point here: the universal 
character is only attained at much larger Reynolds number. In our model co is assumed 
to implicitly account for viscous timescales in the acceleration decorrelation, which are 
not modelled explicitly as in Sawford (1991). The last reference gives an estimate of the 
asymptotic limit of co between 7 and 8 for large Re, but with values of z', around 3 
appropriate for low Re, so the present estimate is not altogether unreasonable. 

The model is now fully specified with no further parameters to be set. Calculations 
for m = 0.5 are shown in figure 5 for the normalized fluctuation on the centreline as a 
function of elapsed time (i.e. downstream distance). Because our definition for the 
length scale of the turbulence, L, depends on m, the appropriate Reynolds number for 
the self-similar case is Re = 200. A number of effective source sizes are used in the 
calculations, spanning the spectrum of relevant physical dimensions. Also shown are 
the experimental data. Evidently, there is a marked improvement from the inertial- 
range model even with an inappropriate value of m. The modifications for molecular 
effects clearly ensure that the peak fluctuations are better represented than in an 
inertial-range model for small source sizes (although there is still an over-prediction) 
and the small-time behaviour is much better. Turning to the m = 0.7 results in figure 
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FIGURE 5. Normalized centreline concentration fluctuations for the material-particle model for self- 
similar decaying turbulence. Each curve is for a different source size and the open circles show 
cawford & Tivendale's (1992) experiments. Source parameters are Re = 200, Pe = 90. We use 
C, = 6 for m = 0.5. 

1 I 

/ __ uolL, = 0.01 rn = 0.7 

0. I 
00000 Experiment 

1 / -  rn = 0.5. Re = 200 

10-2 I I , I I I , , I /  , I I , , 1 1 1 ,  , I I I I I , , ,  1 I I , I , , A  
10 10-2 10 I 100 10' 

t i t, 

FIGURE 6. Normalized centreline concentration fluctuations for the material-particle model. Each 
curve in the figure is for a different source size and the open circles %how Sawford & Tivendale's (1992) 
experiments. Source parameters are Re = 144, Pe = 62. We use C = 3 for m = 0.7. The self-similar 
case from figure 5 with cr,/L, = 0.01 is also shown. 

6 we find further, though slight, improvements. There is still a persistent over- 
prediction, but generally a remarkably similar shape compared to the measured 
distribution of fluctuations. There are indications of a slightly faster fail-off for larger 
times, and comparison with the M = 0.5 results suggest that an immediate value of m 
would better mimic the fluctuations. Unfortunately, statistical uncertainties develop 
towards the end of the simulation so that while a trend towards a constant n,/C is 
developing (o(./c - 0.3), the asymptotic status remains uncertain. 

Further encouraging results are evident in figure 7 which shows the comparison for 
the lateral distribution of fluctuations, normalized by the centreline fluctuation. Each 
curve in this figure corresponds to a different elapsed time (downstream location) and 
the bimodal-unimodal-bimodal transition is evident, although close to the source the 
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FIGURE 7. Lateral profiles of normalized fluctuations at three different times (downstream locations). 
Symbols give experimental values and the curves are from the material-particle model: m = 0.7, 
Re = 144 and Pe = 62. (a) A (weakly) bimodal distribution close to the source; (b) for the 
intermediate time, it is unimodal; and finally, farthest from the source, (c), it is bimodal. a,/L, = 0.02. 
The profiles for the inertial-range model are shown as dashed curves. 

profile of (C2) is too narrow and the near-source distribution of rc is nearly 
unimodal. Note this structure also occurs in the inertial-range modelling, and the 
quantitative fit is also reasonable. This is because the normalization of the lateral 
intensities relative to the centreline intensity is quite forgiving in this instance. 

We consider next the results for a hypothetical point source in the wind tunnel. Our 
temporal-transformation approximation treats this as an instantaneous line source laid 
along the x-axis which subsequently mixes radially outward in a cylindrical fashion. 
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FIGURE 8. As for figure 6, but for a hypothetical wind-tunnel point source (i.e. instantaneous line 
source along the x-axis). No experimental data are shown for line sources, but the instantaneous area 
source (wind-tunnel line source) results are shown as open triangles (for a,/L, = 0.02). 

The already fully parameterized model is used. The results (figure 8) show an expected 
increase in the level of fluctuations, but overall a similar shaped set of curves as for the 
wind-tunnel line source (which is modelled as an instantaneous area source). However, 
there appear to be qualitative differences for the radial (as opposed to vertical) profiles 
of the fluctuations, which are shown in figure 9 to lack significant bimodality. There 
are limited data for this source geometry (Gad-el-Hak & Morton 1979; Nakamura, 
Sakai & Miyata 1987). These data are not inconsistent with our results: the most 
comprehensive of them (Nakamura et af. 1987) are given for t / t ,  > 8 and show the 
fluctuations still rising (with intensities between 1 and 2) as a function of time 
(downstream distance). This can be understood in the context of the present model 
because the Reynolds numbers for these water-tunnel experiments are quite low, but 
the Prandtl number is enormous: - lo4. Thus the main effect is of particles remaining 
close together under the influence of 'viscous forces' and this same effect is responsible 
for the 'overshoot ' of intensities relative to inertial-range model predictions. 

The over-prediction of intensities with the incorporation of molecular effects is the 
consequence of two competing effects: molecular diffusion acts to reduce the 
intensities, while viscous effects act to keep particles together and increase the 
intensities. In the absence of molecular diffusion, coincident particles can never 
separate and the intensities grow (Durbin, 1980; Sawford & Hunt 1986). In our model, 
and for the parameter ranges considered, the dominant effects are: first, the small-time 
behaviour is dominated by molecular diffusivity and there are no Re effects; second, 
the medium-time behaviour is dominated by the viscous resistance to particle-pair 
separation, thus the intensities overshoot the infinite Re results. Ultimately, we expect 
the long-time results to converge (since particle pairs will always separate and 
decorrelate eventually), but our numerical results are not statistically reliable enough 
to be useful in this limit. 

For our model results, at least as far as the calculations appear statistically reliable, 
there are persistently higher intensities for the point-source results (Kaplan & Dinar 
(1 988) noticed similar source-size dependence in their model for concentration- 
fluctuation intensities). As explained by Thomson ( I  990) these curves can converge 
only to zero as the material 'forgets' its initial state, but this is apparently at longer 
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FIGURE 9. As for figure I ,  but for a hypothetical wind-tunnel point source for u,,jL,, = 0.02 (i.e. 
instantaneous line source along the x-axis). No experimental data are shown. In this case the abscissa 
is a radial coordinate measured from the axis corresponding to the initial instantaneous source axis. 
The curve with open triangles corresponds to the theoretical curves in figure 7 (area-source results). 

times (further downstream) than for which our model is reliable. It is not possible to 
decide whether or not the long-time asymptotic intensity of fluctuations is zero with 
our model. However, it is remarkable how slow the line-source results ‘decay’ relative 
to the area-source results; again, it is primarily the ‘viscous overshoot’ that is 
responsible for this effect. 

Figure 10 shows a comparison of the new intensities with those from figurc 1, i.e. 
using a purely inertial-range model. This figure shows that for large source sizes the 
molecular effects are less important but with a tendency for the inertial-range model to 
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FIGURF 10. A comparison of figures 1 and 6 showing the source-size dependence for an inertial-range 
model (lines) and for a model with molecular effects (circles) respectively. The appropriate curves are 
better matched for larger g,,. 
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FIGURE 11. Small-time asymptotic expansion for the centreline intensity of fluctuations matched 
to the numerical results (for m = 0.5, Re = 150, Pe = 75) for a number of initial source sizes. 
The vertical dashed line shows the upper bound for the expected validity of the asymptotic results. 
C,, = 6. 

under-predict at large times, which is a little unexpected. This behaviour needs careful 
interpretation because the value of C, and C?,, differ (by a factor of 2) in the two 
instances. If C, were taken as 3 in the inertial-range model then the effect is to lower 
the long-time results of figure 1 ;  thus the over-prediction of the molecular-effects 
model is enhanced. 

The small-time behaviour, clearly better described by the new model, is shown in 
figure 1 1  together with a simple asymptotic development derived in the following 
section (46). The good description of the small-time behaviour depends mainly on the 
leading-order effect of molecular diffusivity and of the Eulerian velocity statistics and 
thus is not a reliable indication that the present model of the Lagrangian characteristics 
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of the turbulence is good. However, the flatter shape of the curves and the fall-off trend 
for the large times are features dominated by the Lagrangian structure, i.e. when the 
simple molecular diffusion effects are less important, thus the general improvement of 
the predictions supports the Lagrangian model not just the added influence of 
molecular diffusion at small times. 

At present there are no particularly useful asymptotic results in the large-time limit 
although Thomson (1990) has given some arguments related to the ultimate structure 
of the fluctuations. The present results, in particular the gross change in the shape of 
the centreline fluctuations, even for moderately long elapsed dispersion times, indicate 
that the effects of molecular diffusivity and particularly viscosity persist for quite 
significant times and that for the times considered to date it is not possible to ignore 
the dissipative effects. This represents a complication in any attempt to construct a 
long-time asymptotic theory. 

The computations reported in this paper are quite expensive. A Cray Y-MP was used 
for most runs, some of which required 3 h of CPU simply to compute a single time 
point on figures 5 or 6 for the later dispersion times. Ironically, it is the low-Re cases 
which are most demanding. This is because the particles start close together and 
separate very slowly if the viscous effects are strong. The timescales resolved by the 
model are very short when the separation is small (an adaptive time step is used). Thus 
an enormous number of steps is required to separate the particles. In the inertial range 
(for high Re) the separation is very rapid. The other computational complication is 
statistical noise which becomes ever more significant as time increases. For short times 
the order of 2 x lo4 pairs of particles gives reasonable statistics. For the longest of times 
as many as 5 x lo4 gives no guarantee of good results but this number is adequate and 
is used for most purposes. Finally, we note that for low Re, there were occasional 
floating-point numerical problems for initial separations that are too small. Strictly 
speaking, for our model (4.2) and (4.3), which has unphysical singular forms for local 
fluid-particle acceleration as the separation d vanishes, requires that the separation not 
be much smaller than the Kolmogorov microscale 7. For large enough initial 
separation, say 0.17, there were no persistent problems. For large enough Re, it was 
found that no restrictions were necessary. 

6. Saffman’s results and asymptotic behaviour 
Saffman (1 960) considers the development of the displacement probability 

distribution for a material particle. His analysis is local in time and space and expands 
the velocity field in the neighbourhood of the particle with a Taylor series. A local 
solution of the advection-diffusion equation is solved in the approximation that 
diffusion dominates (i.e. for very short times) and for a single &function initial 
condition. He develops a small-time expansion for the velocity autocorrelation and can 
determine the mean-square dispersion accordingly. The results are 

(x2) = 30; = 6 ~ t  + 30-L t2  - $ K t ( t / t , ) 2  4- 0(t4) 

( A 2 )  = 60-i = 1 2 ~ f + $ ~ t ( t / t , ) ’ + O ( t ~ )  

(6- 1) 

(6.2) 

for the dispersion from a point source at the origin, (x’), and 

for the spread about the centre of mass. These two expansions are valid only for times 
much smaller than t ,  and therefore have limited use. 

The stochastic model we use has definite flaws in terms of its microscale structure: 
first, because of the presence of the well-mixed term b ;  secondly for its singular 
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representation of fluid-particle accelerations for vanishingly small separations ; and 
thirdly, because of the white noise ‘ infinite ’ accelerations. In reality, fluid-particle 
accelerations are finite and scale as (C/rt,)1’2. The net result is that expansions for the 
stochastic model equivalent to (6.1) and (6.2) fail at third and second order in t 
respectively. The error due to b is in principle the most serious, but in practice is found 
to be rather weak both because the molecular diffusion is always considered a weak 
perturbative effect and also because two-to-one reductions ensure that b vanishes in the 
mean. The error due to white-noise accelerations is similarly not practically significant. 
The white-noise approximation of course represents a cumulative change in velocity 
increments over many microscale timescales and clearly any expansion based on 
smallness of time within the microscales is in error. However, it is almost never 
expected that models for such short time will be useful and instead we have chosen to 
provide a model for arbitrarily long-time evolutions, where the ‘inertial-range ’ 
cumulative increments are modelled but with molecular modifications also included in 
a reasonable way. Thus when we consider the small-time behaviour we should concern 
ourselves with times small compared with the large scales, but larger than the 
microscales. 

The small-time dispersion results are evidently dominated by molecular diffusion 
effects. An estimate of the fluctuations in this case comes from small-time 
approximation of ( 5 . 3 )  and with a small-d expansion giving c2, 

with the definition (of p)  that m; = r;(1 -p) .  For small times greater than to 

and LJ - 1 Pe f rr: - 2Pc.-’t + t’. 
These approximations are not significantly affected by Saffman’s higher-order 
corrections nor by the singular terms in the stochastic model; as d + 0, such terms tend 
to have local effects for times much shorter than t,, and they do not significantly affect 
(6.1) and (6.2). Thus a good representation of the small-time behaviour is given by 

which gives t’ asymptotic behaviour and, for 2Pe-lt << a:, the initial behaviour 

- 

From the comparison shown in figure 11 these results clearly describe the early 
behaviour of concentration fluctuations, and demonstrate that the small-time defects 
of the model are not practically important. 

7. Large-Reynolds-number limit 
The additional effects of molecular diffusion and viscous subranges appear to 

reconcile anomalous features of Thomson’s (1 990) Lagrangian stochastic model 
predictions with measurements of concentration fluctuations. Thus there is support for 
the idea that Thomson’s model captures the underlying inertial-range structure of 



50 M .  S .  Borgus and B. L. Sawford 

00000 Experimental (Re = 200) 

10-2  
10-3 10-2 10-1 loo 10’ 

tlt, 

FIGURE 12. Normalized centreline concentration fluctuations for the material-partic_le model in self- 
similar decaying turbulence (m = $). The curves are for a sequence of increasing Re (C, = 6 V Re). The 
instantaneous area source size is uo/L, = 0.01 and the Prandtl number is i. Thomson’s inertial-range 
result is shown as a curve with open triangles. 

turbulent motions relevant for relative dispersion. This model derives from theoretical 
scaling properties in very large-Reynolds-number flows, but can apparently be 
modified for lower-Re flows by the present methods. It is of interest to observe the 
development of the large-Reynolds-number solution from the present model by 
performing calculations for a sequence of ever higher Pe and Re. To do this it must be 
understood that co is a parameter in the finite-PCclet-number theory and approaches 
an uncertain limiting value in the limit Re+co. It is the determination of this constant 
which is perhaps the most crucial element of modern Lagrangian dispersion theories 
for the atmosphere. However, for the present we shall consider (hypothetically) 
decaying turbulence with m = 0.5. For co = 6 this gives realistic mean concentrations 
and intensities (see figure 5)  when Re = 200. For infinite Reynolds numbers, a rough 
consensus also has co = 6 (Sawford 1991 ; Rodean 1991); thus we shall suppose co = 
C, = 6 V  Re for the examination of Re dependence when m = 0.5. Comparisons for 
different m may require that to is Re dependent. For example, for low Re and m = 
0.7, comparisons with the wind-tunnel data set used in this paper suggest that co = 3 .  
Similarly for stationary turbulence (m = 0) 

co = C,-600/Re, 

is a rough fit of Sawford’s (1991) ‘bulk’ parameterizations from a one-particle model. 
However, since we are conducting a hypothetical ‘thought’ experiment to examine the 
approach to the infinite-Re limit, and are not necessarily restricting ourselves to a 
particular data set at low (Re say), then almost any kind of Re dependence in C,, could 
be prescribed. We shall only consider the simplest. 

For ease of computations we use m = 0.5 and Pe = :Re, so the results are not meant 
to have explicit bearing on the wind-tunnel measurements. Figure 12 then shows the 
approach of the concentration fluctuations to the levels predicted by Thomson’s 
inertial-range-based model for an instantaneous area source. Reasonable convergence 
occurs for Re NN lo4. The small-scales are evidently most dependent upon dissipative 
effects, and for intermediate times (many t ,  and at least several to) the lower-Re curves 
overshoot the Re = co case giving larger intensities. 
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FIGURE 13. As for figure 12, but corresponding to a hypothetical wind-tunnel point source (i.e. an 
instantaneous line source along the x-axis) and for a different set of Reynolds numbers. Convergence 
to Re = cc is slower than in figure 12. 

Figure 13 displays results appropriate for the instantaneous line source (in the 
transformed problem) for an increasing sequence of Re. The change of source 
geometry (equivalent to a continuous point source in the wind tunnel) has altered the 
convergence characteristics and a much larger Reynolds number, Re - lo5, is required 
for the same agreement. Lower- Re results typically over-predict the concentration 
fluctuation: even for Re = lo', the value can be too large by as much as 30% for 
significant lengths of time. Overall there is an expected higher level of fluctuations for 
the line source for small to moderate times. For long times (i.e. far downstream) and 
large enough Re, the fluctuations decay but it is not possible to determine from the 
model results whether the asymptotic state is for zero intensities, i.e. converged line and 
area source results. 

Naturally occurring flows in the atmosphere typically have Re 3 lo4, therefore 
Thomson's (or some other) inertial-range model could be used in this case. If the 
sources have lengthscales smaller than '1, then some effective source size must be used, 
but then the near-field results will be in error. However, it is unlikely that practical 
applications will need such small lengthscale definition. 

These results indicate that the dispersion process in the atmosphere is dominated by 
inertial-range processes rather than by viscous or molecular-diffusion effects. For lower 
Re, however, an inertial-range model can over-predict fluctuations by as much as 
300 "h. As a cautionary reminder, it is important to remember that C, is not known 
with any certainty and that the work in this paper does not establish the value of the 
inertial-range universal constant unambiguously. The work does favour a larger C, 
value, say C, - 6, but there is no precision in this estimate. 

Figure 14 shows the variation of the concentration fluctuations for various C, 
produced by Thomson's inertial-range model (i.e. our model with infinite Pe and Re).  
The source size is cr, = 0.01. The magnitude of the fluctuations varies by as much as 
a factor of 2 across the range of uncertainty of C, (say 2 6 C, d 10) thus it is clear that 
the value of C, is an important determinant in Lagrangian modelling. It should be 
noted that the work in this paper, while favouring a value in excess of 6, does not 
provide a new reliable estimate of the important inertial-range quantity C,. 

Also, although we find that Thomson's model performs well for the purposes of the 
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FIGURE 14. Normalized centreline concentration fluctuations given by Thomson’s inertial-range 
model for inviscid self-similar decaying turbulence (m = 0.7). The curves are for a sequence of ever- 
larger C, values. The source size is ro /L ,  = 0.01. 

finite-Pe comparison, the sensitivity of the results to the form of a in the velocity 
equation is reduced when molecular effects are important. In the limit of large Pe, when 
the small-scale turbulent motions are the sole means for separating fluid particles, it 
would be worthwhile to reconsider the velocity drift term in more detail, as in Borgas 
& Sawford (1994b). 

8. Discussion 
We have developed a stochastic model for relative dispersion which takes account of 

molecular diffusion and viscous dissipation ranges, the latter in an ad hoc, but 
physically reasonable, way. Despite the approximations and uncertainties, this model 
represents a very advanced and useful tool for examining concentration fluctuations in 
turbulent flows. Such fluctuations are then considered, with particular emphasis on a 
new data set available to the authors. An encouraging degree of agreement is found 
between the measurements and simulations : the mean-concentration field was used to 
fit a model parameter and then the concentration fluctuations are calculated with no 
further free parameters. Fluctuations along the plume centre line agree in magnitude 
to about 30% (although often better), but the shape of the curve varying from close 
to the source to far downstream is very well represented by the processes included in 
modelling. The off-centreline variation of the fluctuations is also well represented by 
the model, thereby giving a model for the entire concentration-fluctuation field from 
a line source. The quantitative agreement available here is much more satisfactory than 
when viscosity and molecular diffusivity are ignored. 

The model is also used for a sequence of increasing Re values and shows practical 
convergence to an Re = 03 inertial-range model when Re M lo4. Thus for most 
atmospheric applications an inertial-range model, such as Thomson’s (1990) model, is 
adequate. 

Source-size effects can be better examined with the new model (particularly for 
sources with scale of order 7 )  and comparisons show that the molecular effects diminish 
as the source becomes larger. Sources with scales 7 and smaller essentially give the same 
fluctuation intensities, which is not the case if a non-truncated inertial-range model is 
used. 
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An important characteristic of our model is the tendency for finite-Re models to 
overshoot the infinite-Re predictions of fluctuation intensities (molecular diffusion 
initially decreases the intensity of fluctuations). This reflects a dominant tendency of 
viscous effects to force particle pairs to remain close together despite the dual action 
of molecular diffusion and turbulent eddies separating them. Of course, pairs are 
eventually rent apart, but it is significant to observe that this effect takes a considerable 
time to affect the fluctuation intensities. 

Considering all the idealizations and approximations, the present level of agreement 
is all that can be expected. For our purposes, we feel that two-particle stochastic 
models of relative dispersion are vindicated by this work and it is not necessary, or 
useful, to strive for greater agreement between the present model (by relaxing 
idealizations for example) and the experiments. The ultimate goal of finding a suitable 
model for atmospheric dispersion. if only for much larger-& isotropic flows, requires 
assessment of more suitable forms of a and more reliable estimates for C,, but can 
usefully ignore explicit dissipative effects. 
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